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Hydrocarbons released into ecosystems have led to environmental pollution and generated a serious 
threat to human health. Bioremediation is an effective method to break down hazardous hydrophobic 
environmental contaminants with avoiding economic and technical disadvantages. This study aimed to 
evaluate the efficiency of Bacillus subtilis SE1, a lipopeptide biosurfactant producer isolated from a 
petrochemical contaminated soil, on biodegradation of gasoline, diesel oil, crude oil and used engine oil in 
soil microcosms. During 35-day incubation, numbers of soil bacteria in petrochemical contaminated soils 
with B. subtilis SE1 addition significantly (P < 0.05) increased in comparison with the oil-free soils. 
Bioaugmentation of SE1 strain also produced a significant (P < 0.05) increase in percent reduction of total 
phenolic content in oil-polluted soils as compared to the control soils at the end of experiment. This study 
indicates that B. subtilis SE1 can be a promising hydrocarbon degrader for in situ bioremediation of soil 
environment polluted with petroleum and petrochemical products.              
 
Key words: Bacillus subtilis, biodegradation, bioremediation, gasoline, diesel, crude oil, engine oil. 

 
 
INTRODUCTION 
  
Hydrocarbon pollution is currently become a critical 
global issue of increasing concerns regarding 
environmental, social and health catastrophes. Presence 
of different types of petroleum and petrochemical 
products viz. gasoline, diesel, crude oil and used engine 
oil, released into environments by either accidental 
spillage or improper disposal practices poses more 
aggravated problems because most disposal methods 
have  been   limited    in    their    applications    owing   to 

expensiveness, partial effectiveness and strict 
environmental conditions. Gasoline constitutes mainly 
aliphatic hydrocarbons (41-62%) and a mixture of 
aromatic hydrocarbons e.g. benzene, toluene, 
ethylbenzene and xylene isomers (10-59%; Speight and 
Arjoon, 2012). Diesel oil is a refined petrochemical 
product composed primarily of hydrocarbon combination 
with carbon numbers ranging from C9 to C20, iso-alkanes, 
paraffinic,  olefinic,  naphtha and aromatic compounds as 
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well as trace elements of sulfur, nitrogen, metals, and 
oxygen (Yakimov et al., 2005). Crude oil contains 
thousands of different hydrophobic components like n-
alkanes, cycloalkanes, aromatics, resins, asphaltines and 
heavy metals (Colwell and Walker, 1977). Polycyclic 
aromatic hydrocarbons (PAHs) is also a group of 
recalcitrant compounds found in crude oil at high 
percentage (Haritash and Kaushik, 2009). Used engine 
oil is a brown to black waste oil discharged from 
automobiles when oil is changed. In general, fresh engine 
oil comprises a higher percentage of lighter hydrocarbon 
and metal salts. Due to high temperature and mechanical 
stress during engine combustion, the oil is chemically 
changed by oxidation, nitration, cracking of polymers and 
decomposition of organometallic compounds leading to 
formation of other contaminants such as alkyl benzenes, 
naphthalenes, methylnaphthalenes and PAHs 
(Dominguez-Rosado and Pitchell, 2003; Lu and Kaplan, 
2008). Exposure of these petroleum and petrochemicals 
generates a serious health risk because of some 
compositions known to be mutagenic and carcinogenic 
agents like benzene (Group 1: Carcinogenic to humans; 
IARC, 1987) and ethylbenzene (Group 2B: Possibly 
carcinogenic to humans; IARC, 2000). 

In recent years, an increased attention has been paid 
to bioremediation by means of microbial function in a 
complex multiphase system, which is proposed to be 
more effective, environmental-friendly, and cost-effective 
technology (Adams et al., 2015). However, there is a 
limitation of biodegradation associated with poor 
accessibility of microorganisms to hydrophobic 
compounds due to their low solubility in aqueous systems 
compatible with microbial life (Millioli et al., 2009). This 
can be compensated by application of biosurfactants or 
biosurfactant producing bacteria in oil-polluted sites to 
increase the solubility and bioavailability of hydrophobic 
compounds and consequently, accelerate rate of 
biodegradation.  

Among several classes of biosurfactants, lipopeptides 
are commonly isolated and characterized biosurfactants 
produced by Bacillus genera. This biosurfactant active 
compound has been reported to have several 
applications in cosmetics, food industry, household 
detergents and cleansing industries, petroleum industry, 
medical health and bioremediation of hydrocarbons in 
contaminated ecosystems (Marchant and Banat, 2012). 
In view point of bioremediation, lipopeptides produced by 
Bacillus species has received a great attention due to 
their degradation efficiency of petroleum hydrocarbon 
and heavy metals from contaminated soils (Bezza and 
Chirwa, 2015; Parthipan et al., 2017).         

Recently, we isolated a biosurfactant producing strain 
of Bacillus subtilis SE1 from a waste engine oil 
contaminated soil in Chon Buri Province, Thailand. 
Biosurfactant produced by B. subtilis SE1 was identified 
as lipopeptide and found to degrade gasoline 
contaminated in soil biostimulated with nutrients.  

Bioaugmentation           of          biosurfactant-producing 
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microorganisms in hydrocarbon polluted soils is an 
interesting method that would generate a continuous 
supply of a non-toxic and biodegradable surfactant and 
promote the rate of biodegradation (Mnif et al., 2015). 
Therefore, this study was designed to evaluate B. subtilis 
SE1 ability to enhance biodegradation of gasoline, diesel 
oil, crude oil and used engine oil in soils under laboratory-
scale bioremediation condition.      
 
 
MATERIALS AND METHODS  
 
Bacterial strain and culture 
 
SE1 strain used in this study was isolated from oil-contaminated soil 
at a local automobile garage in Chon Buri Province, Thailand. It 
was proven to produce lipopeptide biosurfactant and degrade 
gasoline contaminated in soil. It was identified as B. subtilis SE1 
based on its biochemical and morphological features and 16s rRNA 
gene sequence analysis and assigned the accession number as 
MH700588. B. subtilis SE1 was inoculated in a 250 ml Erlenmeyer 
flask containing 100 ml Trypticase Soy Broth (Difco, Sparks, MD, 
USA) in a shaking incubator (JSR, JSSI-100C, Cheongju, South 
Korea) at 200 rpm, 30°C for 24 h. Cell pellets were harvested by 
centrifuging at 8,000 rpm, 4°C for 10 min, washed thrice with sterile 
phosphate buffer saline (PBS). Cell pellets were re-suspended in 
PBS and adjusted to 1.5 A.U. at 580 nm using a spectrophotometer 
(Cintra 40 Double beam, GBC Scientific Equipment, Braeside, 
Victoria, Australia) to obtain SE1 strain number of 109 CFU/ml for 
subsequent use.  

 
  
Biodegradation of petroleum in soil microcosm  
 
Gasoline and diesel were purchased from a local gas station 
operated by Public Company Limited. Crude oil was obtained from 
Thai Oil Public Company Limited while used engine oil was kindly 
provided by an owner of local automobile garage. All petroleum 
products were kept in amber-colored bottles at 4°C until use. 
Biodegradation of petroleum and petrochemical products was 
tested as previously described by Abioye et al. (2012) with slight 
modification. A thirty-five-day long biodegradation study was set up 
under indoor laboratory condition in independent triplicates. Soil 
was collected from an automobile garage located in Chon Buri 
Province. Soil used in this study was loamy and dark brown in color. 
Soil sample (300 g) was thoroughly mixed (3 ml) with one of these 
petrochemicals: gasoline, diesel, crude oil and used engine oil. 
Each petroleum contaminated soil was divided to two batches: 1) 
petroleum contaminated soils and 2) petroleum contaminated soils 
plus B. subtilis SE1 suspension in a 500 ml Erlenmeyer flask. Cell 
suspension of B. subtilis SE1 (1 ml) was aspirated in the 
contaminated soil according to the treatment. The soil was tilled 
every week to maintain the moisture content and allow oxygen 

transfer. During static incubation at 30 C in the dark, soils were 
sampled from each treatment at 2 h, 3, 7, 14, 21, 28 and 35 day 
post-inoculation to evaluate pH change using a calibrated pH meter 
(Denver instrument, UB-10, Bangkok, Thailand), viable bacteria 
count and total phenolic content quantification.  

 
 
Viable bacterial count 

 
At each sampling interval, total viable cell count was evaluated 
using standard plating technique. Soil samples were 10-fold diluted 
in physiological saline prior to spreading in triplicates onto Plate 
Count  Agar  (Difco, Sparks, MD, USA). After incubation at 30°C for 
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24 h, all bacterial colonies were enumerated and calculated as log 
colony forming unit (CFU)/g.   
 
 
Quantification of total phenolic content  
 
Total phenolic content in the soils was assayed using Folin - Ciocalteu 
(FC) reagent (Box, 1983) with minor modification. Briefly, an aliquot 
(0.1 ml) of sample solution was mixed with 20% (w/v) Na2CO3 (1.5 ml), 
10% (w/v) FC reagent (0.5 ml) and distilled water (7.9 ml) in a 
volumetric flask. The mixed solution was allowed to stand at room 
temperature in the dark. After 3 h incubation, absorbance was 
measured at 765 nm using a spectrophotometer. A standard curve 
of gallic acid was prepared and concentration of total phenolic 
content was quantified as gallic acid equivalent from the standard 
curve. Total phenolic content was calculated and expressed as 
percent reduction of total phenolic content (PRP) as equation 
below:  
 

 
 
where PCi = initial concentration of total phenolic content and PCx = 
concentration of total phenolic content at day x.       
 
 
Statistical analysis 
 
Data were expressed as mean ± standard deviation. Data were 
normalized and transformed when needed. Differences were 
determined using a student’s t test to determine difference between 
the treated and control groups at a significant level of P < 0.05. All 
statistical analyses were performed using SPSS version 19.0, 
Chicago, Illinois, USA.    
 
 
RESULTS 
 
At the beginning of experiment, pH values of 
unbioaugmented soils were significantly (P < 0.05) lower 
than those of bioaugmented soils containing gasoline or 
diesel while similar pH was observed in soils with crude 
oil or used engine oil. At the end of experiment, pH 
values of petroleum contaminated soils with SE1 addition 
significantly (P < 0.05) increased ranging from 5.75 ± 0.01 
to 6.03 ± 0.01, compared to those of unbioaugmented 
soils (5.58 ± 0.02 - 5.63 ± 0.02; Table 1).     

In gasoline biodegradation study, PRP values of SE1 
added soil and unbioaugmented SE1 soil increased to 
14.29±2.30% and 10.44 ± 2.12%, respectively at 3 days 
post-incubation and remained relatively constant until 14 
days post-incubation. Afterwards, PRP level of SE1 
added soil significantly increased from 16.12 ± 3.16% to 
27.27 ± 8.30% at 35 days post-incubation while no 
appreciable change occurred in unbioaugmented SE1 
soil (Figure 1). A significant (P < 0.05) difference in PRP 
levels between treated and control groups was observed 
by 7 days post-incubation. The plate count revealed a 
significant (P < 0.05) increase in growth of soil bacteria from 
5.09 ± 0.19 log CFU/g at the beginning of experiment to 
7.11 ± 0.21 log CFU/g at 35 days post-incubation. 

 
 
 
 

The patterns of bacterial growth and PRP value in diesel 
oil polluted soil were similar to those in gasoline-
contaminated soil (Figure 2). A significant (P < 0.05) 
increase in bacterial count was observed since 7 days 
post-incubation and PRP value was significantly different 
(P < 0.05) within day 3 of experiment. PRP value of soil 
polluted with diesel oil with SE1 added increased sharply 
from 0% at the beginning of experiment to 28.24 ± 5.75% 
at day 3 of incubation and afterwards slowly increased 
until reaching 42.92 ± 4.28% at day 35 of incubation. On 
the contrary, PRP value of the control soil slightly 
increased during incubation period and reached 19.75 ± 
1.35% at day 35 of incubation.        

Viable bacterial counts in crude oil treated soils 
with/without B. subtilis SE1 bioaugmentation were similar in 
the ranges of 5.40 ± 0.03 0-5.41 ± 0.02 log CFU/g at the 
beginning of incubation (Figure 3). At the end of experiment, 
bacterial count in crude oil contaminated soil without B. 
subtilis SE1 was 6.71 ± 0.01 log CFU/g, which was 
significantly (P < 0.05) lower than that of SE1 added soil 
(7.16 ± 0.04 log CFU/g). Similar to diesel oil biodegradation 
study, a significant increase in PRP value of SE1 treated soil 
with crude oil contamination was noticed by 3-day post-
incubation. PRP level of crude oil treated soil with B. subtilis 
SE1 addition increased obviously during incubation period 
until reaching 29.55 ±  4.36% at 35 days of experiment. In 
contrast, PRP level of crude oil contaminated soil without 
SE1 strain increased comparatively slowly and reached 
15.06 ± 4.33% at the end of incubation.    

Value of PRP in the control and treated groups related 
with used engine oil was relatively similar in the ranges of 0- 
9.95 ± 2.76% during the first 14 days of incubation. 
Thereafter, PRP value of soil polluted with used engine oil 
and added with SE1 significantly increased to 22.62 ±  
3.70% at 35 day post-treatment while a slight change in 
PRP value occurred in soil polluted with used engine oil 
without SE1 added at the end of experiment (16.39 ± 
1.39%; Figure 4). Viable bacterial count in used engine oil 
contaminated soil with SE1 addition significantly increased 
(P < 0.05) from 5.50 ± 0.05 log CFU/g at the beginning of 
experiment to 7.34 ± 0.03 log CFU/g at 35 days post-
incubation.   
 
 
DISCUSSION 
 
Bioaugmentation of B. subtilis SE1 exhibited an effective 
option to bioremediate the hydrocarbon polluted soils 
evident by significant growth of viable bacteria in the soils 
soaked with one of these petrochemicals: gasoline, diesel 
oil, crude oil and used engine oil, and increase in PRP 
values during a 35-day incubation. Growth of petroleum 
degrading bacteria in polluted soils after inoculation is 
important factor to facilitate biodegradation success (Das 
and Mukherjee, 2007). Due to B. subtilis SE1 isolated from 
soil soaked with used engine oil, it survived and adapted to 
grow  well   with   hydrophobic   substrates   as  sole  carbon  

 

 

 

 

PRP value (%)     =  
(PCi – PCx) 

PCi 
x 100 
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Table 1. pH of petroleum polluted soils with or without Bacillus subtilis SE1 bioaugmentation for 35 days.  
 

Petroleum products 
Beginning of experiment  35 days post-treatment 

None (Control) SE1 bioaugmentation  None (Control) SE1 bioaugmentation 

Gasoline  5.63 ± 0.02
a
 5.83 ± 0.03

b
  5.59 ± 0.02

a
 5.84 ± 0.04

b
 

Diesel oil 5.55 ± 0.04
a
 5.67 ± 0.06

b
  5.58 ± 0.02

a
 5.75 ± 0.01

b
 

Crude oil 5.42 ± 0.05
a
 5.40 ± 0.02

a
  5.63 ± 0.02

a
 6.03 ± 0.01

b
 

Used engine oil 5.37 ± 0.04
a
 5.37 ± 0.03

a
  5.61 ± 0.01

a
 6.03 ± 0.01

b
 

 

Letters indicate significant difference (P < 0.05) between treatments at each sampling interval.  

 
 
 

 
 

Figure 1. Bacterial growth and percent reduction of total phenolic content in gasoline contaminated soil during 35-
day incubation. Asterisks on the lines indicate significant difference (P < 0.05) between treatments at each 
sampling interval. Letters on the bars indicate significant difference (P < 0.05) between treatments at each 
sampling interval. 

 
 
 
source as reported by other authors (Das and Mukherjee, 
2007). A significant increase in viable bacteria over the 
controls indicated that indigenous microflora of soil 
microcosms lacked ability to degrade a variety of 
hydrocarbons in petroleum and petrochemicals used in this 
study. Therefore, addition of hydrocarbon-utilizing bacteria is 
needed to accelerate biodegradation rate of a complex 
hydrocarbon mixture.         

Substantial increases in PRP values were produced when 
inoculating B. subtilis SE1 into oil polluted soils. Similarly, 
several authors reported bioaugmentation of lipopeptide 
producing Bacillus species for biodegradation of crude oil by 
B. subtilis DM-04 (Das and Mukherjee, 2007), B. subtilis 

TB1 (Barin et al., 2014); gasoline by B. subtilis (Darsa et al., 
2014) and diesel oil by B. subtilis ATCC 21322 (Whang et 
al., 2008). Many Bacillus strains were also isolated and 
reported to produce biosurfactant simultaneously with 
biodegradation of hydrocarbons in used engine oil e.g. B. 
subtilis CN2 (Bezza and Chirwa, 2015) and Bacillus 
salmalaya 139SI (Dadrasnia and Ismail, 2015). 
Differences in PRP values were observed when B. subtilis 
SE1 bioaugmented in soils contaminated with each type of 
petrochemicals. In general, biodegradation rate of 
petroleum hydrocarbons is dependent mainly on 
hydrocarbon compositions in petroleum and 
physicochemical   characteristics   of   polluted   systems.  
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Figure 2. Bacterial growth and percent reduction of total phenolic content in diesel contaminated soil during 
a 35-day incubation. Asterisks on the lines indicate significant difference (P < 0.05) between 
treatments at each sampling interval. Letters on the bars indicate significant difference (P < 0.05) 
between treatments at each sampling interval. 

 
 
 

 
 

Figure 3. Bacterial growth and percent reduction of total phenolic content in crude oil contaminated soil during 35-day 
incubation. Asterisks on the lines indicate significant difference (P < 0.05) between treatments at each sampling 
interval. Letters on the bars indicate significant difference (P < 0.05) between treatments at each sampling interval. 
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Figure 4. Bacterial growth and percent reduction of total phenolic content in used engine oil contaminated soil during 35-
day incubation. Asterisks on the lines indicate significant difference (P < 0.05) between treatments at each sampling 
interval. Letters on the bars indicate significant difference (P < 0.05) between treatments at each sampling interval. 

 
 
 

Petroleum and petrochemical products consist generally 
of different hydrophobic compositions. For example, 
diesel oil constitutes a complex mixture of hundreds of 
aromatic hydrocarbons, predominantly iso-alkanes, 
paraffinic, olefinic, naphtha and aromatic compounds 
(Yakimov et al., 2005) while used engine oil contains a 
variety of recalcitrant compounds, like alkyl benzenes, 
naphthalenes, methylnaphthalenes, PAHs and metals 
(Dominguez-Rosado and Pitchell, 2003; Lu and Kaplan, 
2008). Marchut-Mikolajczyk et al. (2018) reported that B. 
pumilus 2A was an effective hydrocarbon degrader of 
both diesel oil and waste engine oil but exhibited different 
degree of diesel oil and engine oil degradation. In 
addition, 2A strain showed different degradation 
efficiency of each hydrophobic component found in the 
two petrochemical products.       

Our recent study confirmed that bioaugmentation of B. 
subtilis SE1 together with nutrient biostimulation enhanced 
substantially biodegradation of gasoline contaminated in 
soil. In fact, supplementation of biosurfactant producing 
bacteria into polluted sites may provide more practical than 
addition of exogenous biosurfactant produced in 
fermentation reactors because of avoiding high cost arising 
from production  and  preparation  of  purified  biosurfactants 

(Mnif et al., 2015). However, in situ biodegradation success 
of hydrocarbons depends on the selection of biosurfactant 
producing bacteria. In our study, all four petroleum and 
petrochemical products seemed to not have a harmful effect 
on bacterial growth. The growth of bacteria together with 
increase in PRP levels is possibly due to enhancing 
bioavailability and solubility of hydrocarbons. Biosurfactant 
can increase solubilization of hydrophobic compounds and 
enhance rate of biodegradation by two distinct ways. First, 
biosurfactants increase substrate bioavailability by 
increasing the surface area of immiscible hydrophobic 
substances leading to increased solubility and enhanced 
direct contact between bacteria and water-insoluble 
hydrocarbon, thereby increasing bacterial growth and rate of 
bioremediation. Another mechanism is associated with 
increased hydrophobicity of bacterial cell surfaces allowing 
hydrocarbon substrates to easily pass through bacterial 
cells (Bezza and Chirwa, 2015). In our recent study, we 
observed that lipopeptide produced by B. subtilis SE1 had 
high emulsifying activity and markedly reduced surface 
tension from 72.27 to 25.95 mN/m. Therefore, addition of B. 
subtilis SE1 with high surface tension reduction and 
emulsification index into hydrocarbon contaminated soils 
could   be   enough   to   promote   the   bacterial   access  to 
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hydrophobic substrates and eventually increase 
biodegradation of all four tested petroleum in soil systems.                            

Apart from increase in bioavailability of hydrophobic 
substrates, B. subtilis SE1 may produce hydrocarbon 
degrading enzymes resulting in improved biodegradation 
success in this study. It is widely known that enzymes 
responsible for hydrocarbon biodegradation pathways are 
low substrate-specific and can react with more than one 
hydrocarbon substrates. For example, cycloalkanes are  
structurally changed to their corresponding cycloalhohols or 
cycloketones, easily degraded by a number of bacteria in 
soil microcosms, by initially induced by the alkane 
monooxygenases (Barin et al., 2014). Therefore, presence 
of contributed enzymes in hydrocarbon biodegradation 
pathways of B. subtilis SE1 should be further studied.      

This study encourages the application of biosurfactant-
producing bacteria for in situ bioremediation of petroleum-
contaminated environments because bioremediation 
process is cost-effective and environmental-friendly. Our 
results provided evidence that a stain of lipopeptide 
producer, B. subtilis SE1, isolated from oil-impacted soil and 
accustomed to environmental conditions in Thailand, 
enhanced significantly PRP values and promoted the 
growth of soil bacteria in petroleum and petrochemical 
polluted soils. Therefore, B. subtilis SE1 has a potential use 
for bioremediation of soil environment polluted with 
petroleum and petrochemical products in Thailand and may 
have possible applications in microbial enhanced oil 
recovery and related technologies. 
 
 

Conclusion 
 
This study showed that B. subtilis SE1 was useful in 
bioremediation of soils polluted with petroleum and 
petrochemicals (gasoline, diesel oil, crude oil and used 
engine oil) because growth of soil bacteria markedly 
increased in petroleum contaminated soils along with 
significant increase in PRP levels during 35-day incubation.       
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Atrazine is a widely used herbicide on many crops and is considered one of water pollutant with 
approved biological hazards on plants, animals and human. Vicia faba seedlings as a biological system, 
is used to investigate the genotoxicity of Atrazine. Also, Nano selenium (N-Se), a Nano particle with 
reactive oxygen species scavenging activity was applied to reduce the genotoxicity of Atrazine. 
Atrazine treatment at concentration of 35 mg/L is applied. Two concentrations of N–Se (10 and 20 ppm) 
were used alone and in combination with Atrazine (35 mg/L) in addition to control treatment. Changes in 
germination percentage, shoot and root length, hydrogen peroxide (H2O2) content, lipid peroxidation 
product malondialdehyde (MDA), chromosomal aberrations, and mitotic index were determined. Semi 
quantitative RT-PCR analysis (sqRT-PCR) was applied to investigate associated changes in expression 
pattern of some stress related genes such as antioxidant enzymes, heat shock proteins (HSP17.9, 
HSP70.1), photosystem II (PSII) and Metalothioniene (MT). Atrazine treatment recorded the lowest 
germination percentage and caused a reduction in shoot and root length. Significant increase in H2O2 
value, MDA contents, and chromosomal abnormalities percent resulted in Atrazine treatment. 
Noticeable suppression in expression level of all studied genes was accompanied with Atrazine 
treatment. N–Se, in its two concentrations with Atrazine causing a reduction in all severe effects of 
Atrazine and improving seedlings performance. Treatments with N–Se induced the expression of MT 
gene with increase in expression level alongside increase in the concentration of N-Se. This is one of 
rare studies that investigate the biological effects of N–Se in vivo anti-mutagenesis of Atrazine as well 
as a first record of Nano metalic particles  N–Se as inducer for MT genes. 
 
Key words: Nano Selenium, Atrazine, chromosomal aberrations, gene expression, Vicia faba. 

 
 
INTRODUCTION 
 
In agriculture, increasing attention is paid to beneficial 
impacts of nanoparticles (NPs) which applied in low 
doses on  various  crops  (Jampílek  and  Kráľová, 2017). 

Using of NPs can enhance plant growth, guarantee food 
quality and minimize the waste (García et al., 2010; 
Sonkaria  et  al.,   2012;   Prasad,  2014;  Sekhon,  2014). 

 

*Corresponding author. E-mail: samar_omar5@agr.tanta.edu, samar_omar5@yahoo.com.   

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 

 
 
 
 
Nano–Selenium (N–Se) is recently used in the field as 
Nano fertilizer (Gao et al., 2002). A few studies have 
been published concerning the comparison between N–
Se and other inorganic Se forms in higher plants 
(Domokos-Szabolcsy, 2011; Domokos-Szabolcsy et al., 
2012). Also, less information are documented about 
biological effects of N–Se and its application (Chau et al., 
2007; Cushen et al., 2012; El-Ramady et al., 2016). The 
suggested role of N-Se as reactive oxygen species 
(ROS) scavenger (Bhattacharjee et al., 2014; Sarkar et 
al., 2015) pointed to the possible application of this 
promising Nano material to remove the deleterious 
effects of different stresses. 

Indiscriminate use of pesticides and herbicides in 
agriculture causes many disorders in human and animal 
health and do pose a potential risk to humans and 
unwanted side effects to the environment (Aktar et al., 
2009). Atrazine (2–chloro–4–ethylamino–6– 
isopropylamino – 1,3,5 –triazine) is one of triazine class 
herbicide that is widely used to prevent emergence 
broadleaf and grassy weeds in variety of crops such as 
sorghum, pineapple, maize, sugarcane (Kumar and 
Srivastava, 2015). It is considered as one of the most 
common contaminants in ground and surface waters 
(Ribaudo and Bouzaher, 1994; Ali et al., 2016). 

Several studies indicated the genotoxicity of Atrazine 
(Srivastava and Mishra, 2009). Significant increases in 
DNA strand breaks and frequencies of micronuclei 
occurred in erythrocytes of C. auratus exposed to 
Atrazine (Cavas, 2011). It is widely separated where it 
transports from the site of use to areas as far as 1,000 
km via atmospheric transport and deposition through 
precipitation (Mast et al., 2007; Thurman and Cromwell, 
2000). Atrazine ecotoxicology effects have been 
indicated by several studies (Song et al., 2009; Bolle et 
al., 2004); the European Union banned the use of 
Atrazine in 2004 because of its contamination of water 
sources (Commission, 2004)  

The present study was designed to investigate the 
protective role of synthesized N–Se on V. faba seedlings 
treated with Atrazine. Our investigation tracked the 
associated changes in oxidative stress that occurred in 
the plant tissue and examining the cytological effects of 
the herbicide Atrazine with respect to mitotic index, 
chromosome aberrations and determination of changes 
in expression pattern using semi quantitative analysis of 
some stress related genes. 
 
 
MATERIALS AND METHODS 
 

Experimental method and growth environments 
 

Fifty seeds of V. faba in equal size were used for each treatment. 
Seeds were surface sterilized with 2.5% sodium hypochlorite for 2 
min. Sterilized seeds were washed with three changes of sterile 
distilled water and dried using sterile filter paper. The experiment 
was divided into six groups. One was left as a negative control 
where distilled water was used, while the second was considered 
as a positive control where 35 mg/L  of  Atrazine  were  added.  The  
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remaining four treatments received 10, 20 ppm of N–Se alone, and 
in combination with Atrazine. 
    Seeds at control and all other treatment were soaked for 24 h, 
and then were recovered in distilled water for one hour as recorded 
by Pandey and Upadhyay (2007). Germination and seedling 
development were carried out in five replicates of 10 seeds in a 15-
cm diameter Petri dish. Petri dishes were lined with filter paper 
(Whatman No. 1) moistened with sterilized distilled water and 
incubated in dark at 25°C. The germination percentage was 
calculated after 24, 48 and 72 h by this formula: 

 

 
 
Seedlings growth was measured in terms of shoot and root length 
(cm) after seven days of germination. 

 
 
Cytological analysis 

 
Root tips (1.5-2 cm) of germinated seeds were cut and fixed in 
Carnoy's fixative solution (ethyl alcohol absolute and glacial acetic 
acid in the ratio of 3:1) for 24 h. Root tips are kept in 70% ethyl 
alcohol at 4°C until it is used for cytological analysis. 

Aceto–carmine stain in concentration of 2% was used for 
cytological preparations as described by Darlington (1976). Mitotic 
index, numbers and types of abnormalities were scored in at least 
3000 examined cells per treatment (1000 cell/replicate) using light 
microscope. Mitotic index (MI) and percentage of abnormal cells 
were calculated using the following formulas: 

 

 
 

 
 
 
Data analysis 

 
Statistical package for social sciences (SPSS) software for windows 
version 20 were applied on obtained data for One-Way Analysis of 
Variance followed by Duncan test and the results were considered 
significant at P < 0.05. 

 
 
Estimation of hydrogen peroxide (H2O2) content 
 
Half gram of plant sample was homogenized in 5 mM of 0.1% 
(w/v) TCA and centrifuged at 12,000 rpm for 15 min to extract 
hydrogen peroxide as described by Velikova et al. (2000). Ten 
mM potassium phosphate buffer (pH 7.0) and 1 M potassium 
iodide were added to the supernatant. The absorbance of the 
supernatant was recorded at 390 nm. Pre-prepared standard 
curve was used for calculation of H2O2 content. 

 
 
Evaluation of lipid peroxidation product 

 
The concentration of TBA (thiobarbituric) -reactive products 
equated with malondialdehyde (MDA) was used to evaluate the 
level of lipid peroxidation as originally described by Heath and 
Packer  (1968),  with  slight   modifications   as   in   Hendry  (1993).  
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Table 1. The studied genes and actin as housekeeping gene: names, accession no   (NCBI) and primers sequences. 
 

Primer code Gene Accession no.  
Primer sequence 

5’----------------------3’ 

SO–101 Actin JX444700.1 
F TGGAGATGATGCACCTCGTG 

R CACGCTTAGACTGTGCCTCA 
     

SO–102 Catalase JQ043348.1 
F CGATGCTGTTCGTCATGCAG 

R CAGGTGCCCAAGTTCGGTAT 
     

SO–104 Fe–SOD EU884308.1 
F TGAAAGAGACTTTGGTTCAGTTTGA 

R GATTGCAAGCCATGCCCAG 
     

SO–105 Cu/Zn-SOD EU884303.1 
F CCGAGGATGAGACTAGACATGC 

R CATCAGGATCGGCATGGACA 
     

SO–106 HSP–17.9 KC249973.2 
F TCGACATGCCAGGGTTGAAA 

R CACAGCTGAAACAGCATCGG 
     

SO–107 HSP–70.1 
EU884304 

 

F GACCACCGGTCAGAAGAACA 

R ACCCGCATTATCCTCAGACT 
     

SO–109 MT X91077.1 
F TCTGGCTGTGGTTGTGGAAG 

R GGACCGAAGCCTAGAACCAC 
     

SO–110 PSII–D1 KF042344.1 
F CGCCGAATACACCAGCTACA 

R ATATTCAGCTCCCGTCGCAG 
 
 
 

Extraction buffer of 50 mM phosphate buffer (pH 7.0) containing 1 
mM EDTA, 0.05% Triton X-100, 2% (w/v) poly vinyl pyroolidone 
PVP and 1 mM AsA was used with plant sample. Two hundred 
microliters of supernatant were added to 0.5% TBA in 10% TCA. 
This solution was incubated in a 95°C water bath for 20 min 
followed by rapid cooling in an ice-water bath to stop the reaction. 
The products were quantified from the second derivative spectrum 
against standards prepared from 1,1,3,3–tetraethoxypropane. The 
amount of MDA was measured calorimetrically using 
spectrophotometer (UV190IPC) at 532 nm. The TBA-reactive 
products (MDA) were expressed as nmol.g-1DW. 

 
 
Total RNA extraction and cDNA synthesis 

 
Total RNA was extracted from seedlings of control and all treated 
seedlings using Simply P Total RNA Extraction kit (BioFlux 
Cat#BSC52S1) according to manufacturer's procedure. RNA was 
analysed in 1.2% agarose gel with using RNase–free devices to 
assess RNA integrity. RNA extracts were diluted 1:10 in DEPC–
treated water and RNA concentration was determined using 
NanoDrop spectrophotometer (BioDrop µLITE.UK). RNA purity 
values higher than 1.8 was considered acceptable. First–strand 
cDNA was synthesized using 5 μg of total extracted RNA for each 
sample according to the protocol supported by GoScript™ reverse 
transcription Kit (Promega USA) using Oligo (dT)15 primer. 

 
 
Semi–quantitative reverse transcriptase polymerase chain 
reaction (sqRT–PCR) 

 
Normal PCR was used to amplify the number of copies of specific 
cDNA sequences in vitro. All primers used for sqRT–PCR is listed 
in Table 1. They were designed based on sequencing data of 
expressed sequence tags (ESTs) from V. faba's database of 
selected genes on the website of National Center for Biotechnology 

Information (NCBI). Primers were designed using the Primer Primer 
5 software following the manufacturer’s guideline for primer design. 
Primers were ordered from Oligo Company. Samples of cDNA were 
standardized on actin transcript amount. Actin cDNA (accession no. 
JX444700.1) was used as an internal constitutively expressed 
control (reference gene) using gene specific primer in PCR (Table 
1). For typical PCR reaction, 1 μL cDNA was used as template in 
25 μL reaction volume according to instruction supported with 
MyTaqTM Red Mix 2x (BIOLINE). PCR program for sqRT–PCR was 
optimized for each gene to yield optimal contrast between samples 
in the fluorogrammes of subsequently performed EtBr-agarose gel 
electrophoresis. The general program was; 94°C for 5 min, followed 
by cycle of 94°C for 30 s, 55  to 57°C (Table 1) for 30 s, 72°C for 1 
min, and last extension step of 72°C for 5 min. Amplification 
products (15 µL) were electrophoresed on 1.8% agarose gel 
stained with EB. For assessment of the changes in gene 
expression of different genes, integrative density values (IDV) was 
determined using Totallab© v13.2 soft wear. 

 
 
RESULTS AND DISCUSSION 
 

Effect of treatments on seed germination and 
seedlings growth 
 
Data presented in Table 1 revealed that there was no 
significant differences in the germination percentage, the 
highest germination percentage of V. faba was detected 
after 72 h in N–Se 10 ppm, N–Se 20 ppm and 
Atrazine+N–Se20 compared with Atrazine which record 
the lowest germination percentage. 

With respect to root and shoot lengths, results in Table 
1 indicated that N-Se had significant effects in both 10 
and  20 ppm  for  root  length,  but this effect did not differ  
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Table 2. Effect of Atrazine and N–Se treatments on germination (%) and root and shoot lengths (cm) of V. faba.  
 

 Germination (%) 24 h Germination (%) 48 h Germination (%) 72 h Root length (cm) Shoot length (cm) 

C 79.56± 12.98 90.35±11.22 93.05±8.86 5.83±2.70
ab

 3.38±0.98 

AT 70.91±11.78 85.45±11.21 89.58±9.40 4.25±1.23
b
 2.84±0.60 

N–Se10 73.97±25.38 92.85±12.19 93.75±10.45 7.20±3.09
a
 3.10±0.73 

N–Se20 78.57±18.70 91.07±9.44 93.75±10.45 6.93±2.55
a
 2.74±0.69 

AT+10 67.85±17.46 85.71±11.24 91.66±6.45 5.90±1.95
ab

 2.93±0.68 

AT+20 86.72±11.00 90.55±10.50 93.15±11.77 6.02±1.41
ab

 2.65±0.47 

 0.35 0.74 0.97 0.07 0.29 
 

Values labeled with the same letter are not significantly differing at 0.05 probability level. (C) Control, (AT) atrazin, (N–Se10 and N–Se20) N–Se 
concentrations and (AT+10 and AT+20) are combination between Atrazine and N-Se. 

 
 

 

when combined with Atrazine, the Atrazine treatment 
recorded the lowest value for root length. 

In relation to shoot length, the data did not record 
significant effects and the N–Se 10 ppm showed the 
same value for control. From previous results, it can be 
concluded that N–Se (10) had the best record in both 
germination as well as shoot and root length. These 
results may be in agreement with Zhang et al. (2001) 
who reported that N–Se have a high biological activity, 
an excellent bioavailability and low toxicity. 

 
 
Changes in H2O2 and MDA values 
 
Atrazine treatment showed a significant increase in both 
of H2O2 (Figure 2A) and MDA (Figure 2B) contents in 
plant seedlings compared with control treatment. MDA is 
the decay product of poly unsaturated fatty acids of bio-
membranes. Increasing of H2O2 and subsequently MDA 
contents clearly indicate the oxidative status of the cell 
(Omar et al., 2013). Thus, oxidative stress may be one of 
the potential mechanisms by which harmful effect of 
herbicide is occurred (Bongiovanni et al., 2012; Hassan 
and Alla, 2005). Increasing oxidative stress with Atrazine 
treatment was reported before in bean and maize 
(Hassan and Alla, 2005). Treatment with Ne–Se in its two 
concentrations caused a significant decrease in values of 
H2O2 and MDA contents than control values. Also, the 
combination addition of Atrazine with N-Se showed a 
significant reduction in H2O2 and MDA contents compared 
with treatment of Atrazine alone (Figure 2). These results 
showed the role of N–Se in reducing the oxidative stress 
of Atrazine. Decreasing oxidative stress could be a result 
of scavenger role of N–Se on different free radicals in 
vitro (Huang et al., 2003). Also, it has been reported that 
N–Se has a high efficiency in up-regulating seleno-
enzymes (Wang et al., 2007). These results indicated 
that N–Se can serve as an antioxidant with reduced risk 
of Se toxicity (Zhang et al., 2007). Using N–Se alone or 
accompanied with Atrazine, causes an improvement in 
growth condition for plants which reflected on the growth 
rate in root and shoot lengths (Table 2), so it can help to 
reduce the severe effects of Atrazine. 

Cytological effects on mitosis of V. faba root tips 
 

Table 3 illustrated the effect of Atrazine and N–Se on 
mitotic index (%) and chromosomal aberrations in V. faba 
seedlings. Cytological analysis showed that the highest 
value of mitotic index (%) was scored in Atrazine+N–
Se20; it showed significant (P> 5%) differences 
compared with negative and positive control. Application 
of N-Se alone did not exhibit any differences about 
negative and positive control but the combination 
between Atrazine and N–Se exhibited significant 
differences especially in high concentration of N–Se 
(Atrazine + N–Se20). In relation to chromosomal 
aberrations, Atrazine had genotoxic effects. The highest 
ratio for chromosomal aberrations compared to control 
and other treatments was in Atrazine, a result that agrees 
with Srivastava and Mishra (2009) who indicated that 
Atrazine may produce genotoxic effects in plants. 
Micronucleus, double nuclei, C–metaphase, lagging 
chromosome, break and disturbance were prevalent 
mitotic aberrations. Also, oxidative stress and DNA 
damage occurred on V. faba treated by Atrazine. Song et 
al. (2009) found significant differences after treatment 
with different doses of Atrazine compared to the controls 
in the Olive tail moments of single–cell gel electro-
phoresis of root cells which are enhanced by Atrazine. 

The combination between N-Se and Atrazine reduced 
the undesirable side effects of Atrazine; the results also 
indicated that the low concentrations of nanoparticles are 
better than the high concentrations alone or in 
combination with Atrazine. These results agree with the 
studies which indicated the protective effect of selenium 
nanoparticles against many materials induced cytotoxicity 
and genotoxicity effects, where N–Se caused significant 
reduction in chromosomal abnormality in bone marrow, 
and DNA harm in lymphocytes as well as bone marrow in 
mice treated with Cyclophosphamide-induced 
hepatotoxicity and genotoxicity (Bhattacharjee et al., 
2014).  
 

 

Expression patterns of selected genes 
 

sqRT–PCR  analysis  showed  a   differential   expression  
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Table 3. Mitotic index, percentage of mitotic phases, types and percentage of abnormalities of V. faba root tip cells under different treatments: control(C), atrazin (AT), N–Se (N–Se10 and N–
Se20) and combination between Atrazine and N–Se (AT+10 and AT+20).  
 

Treatment 

No. of 
examined 

cells 

No. of 
dividing 

cells 

No. of 
abnormal 

cells 

Mitotic phase (%) Mitotic aberration (%) Mitotic 
index 

(%) 

Abnormalities  

(%) Prophase Metaphase Anaphase Telophase Micronucleus 
C-

metaphase 
Laggard break Disturbance 

Double 
nuclei 

C 3512 155 13 42.58 20.00 8.39 29.03  46.15  7.69 7.69 38.46 4.42±0.59c 8.03±5.30b 

AT 3124 159 45 48.43 15.10 11.32 25.20 2.22 20.00 13.33 8.88 22.22 33.33 5.14±2.24bc 26.68±10.14a 

N–Se10 3163 123 12 66.66 19.51 2.43 11.38  41.66    58.33 3.54±1.91c 11.96±6.71b 

N–Se20 3173 135 22 77.77 8.15 2.96 11.11  27.27 4.54  9.10 59.10 4.23±0.88c 17.18±6.22ab 

AT+10 3367 266 30 57.52 11.65 9.02 21.80 3.33 33.33 6.66 16.66  40.00 7.85±1.75ab 11.73±3.01b 

AT+20 3183 337 50 71.81 7.12 6.82 14.24 4.00 34.00  8.00 30.00 24.00 10.56±1.54a 14.42±3.59b 

              0.001 0.046 
 

Values within columns followed by the same letter(s) are not significantly differing at 0.05 probability level. 
 
 
 

pattern for all selected gene (Figures 3 and 4). In 
general, treatment with Atrazine caused 
suppression in the expression of all studied genes 
compared with control treatment. Analysis of IDV 
values (Figure 4) showed that expression level of 
all studied genes was clearly decreased 
compared with control treatment. Inhibition effect 
of Atrazine on antioxidant enzymes were recorded 
in broad bean and maize (Hassan and Alla, 2005). 
Thus, effect on antioxidant genes (CAT, cu/zn–
SOD and fe–SOD) could explain the associated 
increase in H2O2 and subsequently MDA contents 
in Atrazine treated seedling (Figure 1). Reduction 
in PSII expression level could be as a result of 
oxidative stress induced by Atrazine. PSII 
expression reflects the photosynthesis activity of 
the cell. So, the reduction in PSII expression 
explains the reduction in growth rate as root and 
shoot's length. Damaging of photosynthesis 
apparatus PSI and PSII under oxidation stress 
has been reported at many plant species (Van 
Breusegem et al., 1999; Allakhverdiev et al., 
2000; El-Shihaby et al., 2002). Treatment with N–
Se  in   its   two   concentrations  induced  a  great 

increase in expression level of all studied genes 
compared with both control and Atrazine 
treatments (Figures 3 and 4). That could explain 
the reduction of H2O2 contents accompanied with 
N–Se application. Also, the addition of N–Se to 
Atrazine treatment reduces the suppression 
effects of Atrazine on gene expression of all 
studied genes. 

Two studied HSPs genes in this study showed 
different responses to Atrazine, where the one 
with high molecular weight (HSP70.1) was more 
affected by Atrazine treatment than that with low 
molecular weight (HSP 17.9). Also, (HSP70.1) 
showed less response to N–Se treatment than 
(HSP17.9). Metallothioneins (MTs) as low 
molecular weight metal binding proteins showed 
an increase in their expression along with 
increasing N–Se concentrations. Increasing the 
expression pattern of MTs was reported in 
sugarcane treated with graded concentration of 
Se (Jain et al., 2015). This result revealed that N–
Se cause an induction of MTs expression. For 
authors’ knowledge, this is the first investigation 
for    ability   of   Nano   particles   to   induce  MTs  

expression. 
Our results showed that treatment with N–Se 

either alone or with Atrazine cause a noticeable 
increase in the expression level of antioxidant 
genes and some protected genes such as 
HSP17.9 gene, thus cause a reduction in oxidative 
stress and improve growth condition. For authors’ 
knowledge, this is one of rare studies that 
investigate the biological effects of N–Se in vivo 
as growth stimulator, and could be the first record 
for N–Se anti-mutagenesis effect of Atrazine as 
an herbicide widely applied on many plants. 
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Figure 1. Changes in MDA content (A) and rate of electrolyte leakage (B) of V. faba 
seedlings under different treatments: control(C), atrazin (AT), N–Se (N-Se10 and N–
Se20) and combination between Atrazine and N-Se (AT+10 and AT+20). Values are 
the main of three replicates ±SE. Values labeled with the same letter are not 
significantly differ at 0.05 probability level. 

 
 
 

 
 

Figure 2. Types of abnormalities observed in V. faba root tips cells under different 
treatments: Control(C), atrazin (AT), N–Se (N–Se10 and N–Se20) and combination 
between Atrazine and N–Se (AT+10 and AT+20). (a) C–metaphase with fragment, 
(b) Disturbed metaphase, (c) Metaphase with laggard, (d) Sticky prophase, (e) 
Multiple bridges, (f) Telophase with single bridge and laggard, (g) Anaphase with 
chromosome breakage, (h) Anaphase with laggard (i) Micronucleus. 
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Figure 3. Changes in levels of expression of studied genotypes under different treatments: 
control(C), atrazin (AT), N–Se (N–Se10 and N–Se20) and combination between Atrazine and N–Se 
(AT+10 and AT+20).  
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Figure 4. Changes in levels of expression of studied genes expressed as integrative density values (IDV) 
quantified using Totallab© v13.2 soft wear. IDV thus obtained was divided by 1000 for ease of writing on the 
y axis. 
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